Connect with us

CIENCIAS

Qué es la 5ª dimensión y dónde está escondida

“¿Qué es la 5ª dimensión? Yo sé que la 1ª es altura, la 2ª, anchura; la 3ª, profundidad, y la 4ª, tiempo. ¡Pero nadie parece saber qué es la 5ª!”.

Esa fue la pregunta que le envió Lena Komaier-Peeters, una chica de 12 años, a los detectives de la BBC, el genetista Adam Rutherford y la matemática Hannah Fry, quienes se fueron a Ginebra, Suiza.

En Ginebra visitaron el lugar en el que se realiza el que probablemente es el más alucinante experimento con el tiempo y el espacio, el CERN —el Centro Europeo para la Investigación Nuclear—, y le pidieron a la física de partículas Rakhi Mahbubani que nos ayudara a… entender.

“Imagínate un canal que sea estrecho y largo, con botes de diversos tamaños navegándolo.

Image copyrightGETTY IMAGESCanal en Venecia
Image captionUn canal… ¿servirá este hermoso de Venecia?

“Si tienes un enorme crucero que ocupa casi todo el ancho, sólo se puede mover a lo largo del canal; no tiene la posibilidad de moverse a lo ancho, así que desde la perspectiva de ese crucero, el canal solo tiene una dimensión .

“Si lo que tienes es un velero, podrás zigzaguear a lo ancho. Desde la perspectiva del velero, el canal tiene dos dimensiones .

“Si viajas en un submarino, experimentaría tanto el largo y el ancho, pero también la profundidad. Desde esa perspectiva, el mismo canal tiene tres dimensiones “.

Nosotros somos submarinos: vivimos en 3D… y los físicos —por más raros que puedan parecer— también, entonces…

¿Por qué tantos insisten en que hay otras dimensiones?

“Una razón muy convincente es que realmente no entendemos por qué la fuerza de gravedad es mucho más débil que las otras fuerzas fundamentales que experimentamos .

“Si te doy un imán de los que la gente pone en los refrigeradores y una llave cualquiera, el imán puede levantar la llave con mucha facilidad.

“La fuerza magnética de ese pequeño imán supera la fuerza de gravedad de la Tierra, que es enorme, que está halando la llave en dirección opuesta”.

Image copyrightGETTY IMAGESImán en nevera
Image captionLa fuerza magnética de un pequeño imán puede ganarle a la fuerza de gravedad.

Cierto, pero, ¿por qué eso implica que hay otras dimensiones?

“La hipótesis es que la gravedad, como el submarino en el canal, puede experimentar dimensiones adicionales, mientras que nosotros no tenemos esa capacidad, y se disipa en esas otras dimensiones y por eso nosotros sentimos que es muy débil”.

Entonces, la fuerza de gravedad estaría diluida.

Un concepto con una larga 4ª dimensión

El concepto de dimensiones adicionales puede parecer futurista, pero la idea ha existido durante un tiempo sorprendentemente largo.

Se hizo popular en el mundo de las matemáticas cuando el alemán Bernhardt Riemann demostró en 1854 que podrían existir más de 3 dimensiones en geometría (aunque tuvo un colapso nervioso en el proceso).

Más tarde en ese mismo siglo, el matemático británico y fanático de la ciencia ficción, Charles Howard Hinton, diseñó un hipercubo tetradimensional llamado “teseracto” .

Image copyrightSCIENCE PHOTO LIBRARYUn teseracto.
Image captionUn teseracto es un análogo en 4 dimensiones de un cubo, así como un cubo es un análogo tridimensional de un cuadrado. El modelo es una proyección teórica de un cubo de cuatro dimensiones sobre el espacio tridimensional.

Junto a la ciencia vino el arte, y el concepto de dimensiones extra apareció en obras de Oscar Wilde, Marcel Proust y HG Wells (y el teseracto juega un rol destacado en los comics de Marvel). Además inspiró a artistas cubistas como Picasso , que intentaron representar más dimensiones en sus pinturas.

No obstante, hasta ahora, nadie ha podido probar que realmente existen.

Eso es exactamente lo que están tratando de hacer en el CERN, y para probar teorías, necesitamos experimentos.

Cómo descubrir la misteriosa 5ª dimensión

Primero, necesitas un objeto enorme para encontrar las partículas fundamentales más pequeñas en el Universo.

El que tienen en el CERN se llama Gran Colisionador de Hadrones o LHC (por sus siglas en inglés: Large Hadron Collider ), un acelerador protón-protón de 27 km de circunferencia.

Image copyrightGETTY IMAGESParte del LHC
Image captionPor aquí van disparados los protones.

Con él se disparan rayos de partículas a casi la velocidad de la luz para que cuando dos protones colisionen creen todo tipo de otras partículas.

Si las teorías actuales son correctas, hay una diminuta probabilidad de que una de las partículas subatómicas en esa colisión sea algo llamado gravitón .

La física cuántica nos dice que cada fuerza tiene una partícula relacionada que la lleva. Por ejemplo, la luz es transportada por fotones. Así que la gravedad debería teóricamente ser transportada por gravitones, solo que nunca los hemos observado.

Pero podrían ser la clave para desbloquear dimensiones ocultas.

Es por eso que los científicos del CERN no han dejado de buscarlo durante 14 años.

Image copyrightGETTY IMAGESChica con cara metida en la pantalla del computador
Image captionUna búsqueda que no cesa…

Y no pierden la esperanza.

Aunque, hay otros físicos teóricos que no son tan optimistas, como Sean Carroll, de Caltech, en California.

Estamos muy seguros de que los gravitones existen , de lo que no estamos seguros del todo es que se podrán descubrir con el Gran Colisionador de Hadrones. De hecho, lo opuesto: tienes que ser muy, muy, muy suertudo para poder encontrar gravitones en el GCH.

“Hay teorías y las estamos poniendo a prueba pero si los gravitones estuvieran ahí, los habríamos podido ver fácilmente y no los hemos visto, así que las probabilidades son mínimas.

“Pero, claro, vale muchísimo la pena buscar esas otras dimensiones pues si llegáramos a encontrarlas, todo lo que pensamos sobre las leyes fundamentales de la naturaleza cambiaría: sería un descubrimiento trascendental.

Si no los vemos, no significa que no estén ahí , sino que nuestros experimentos aún no son lo suficientemente buenos. Si seguimos tratando, algún día daremos en el clavo”.

Y si damos en el clavo y revelamos esas tan buscadas dimensiones efectivamente existen…

¿Cómo serán? y ¿dónde han estado escondidas?

“Están en todas partes”, responde el físico Sean Carroll, pero añade: “sí existen”.

Image copyrightGETTY IMAGESBuscando tras el sofá
Image caption¿Dónde están?

“Tienes que meterte en la mentalidad de los físicos para entender a qué se refieren cuando dicen la palabra ‘dimensión’.

“Tendemos a creer que una dimensión es un lugar al que vas y está poseído por criaturas extrañas.

“Una dimensión es sencillamente una dirección en el espacio . En este momento conocemos tres, que podríamos llamar ‘arriba-abajo’, ‘izquierda-derecha’ y ‘adelante-atrás’.

“Así como no tiene sentido decir ‘dónde está la dimensión ‘arriba-abajo’… ¡está en todas partes! Lo mismo será verdad de las otras dimensiones.

“Lo que sabemos con seguridad es que están escondidas para nosotros de alguna manera, así que podrían ser muy, muy, muy pequeñas, tanto que nunca las veremos —esa es la manera más fácil de esconderse—.

“Pero hay otras dos posibilidades: una es que sean medio pequeñas —un milímetro o un décimo de milímetro— y la otra es que las dimensiones sean infinitamente grandes pero no podemos llegar a ellas pues estamos atrapados en un subespacio de dimensión inferior del Universo.

Image copyrightSCIENCE PHOTO LIBRARYConcepto
Image captionLas branas serían membranas que mantienen a nuestro Universo con sus 4 dimensiones en un espacio con múltiples dimensiones.

“Eso es algo que los físicos a veces llaman la cosmología de branas (una forma extraña de decir membranas como las que limitan a nuestro Universo de 4 dimensiones dentro de un espacio de dimensionalidad superior llamado ‘bulk’).

“Si eso es cierto, podría haber múltiples branas, múltiples subespacios de bi, tri, tetra, pentadimensionales paralelos. En ese sentido podría haber mundos paralelos incorporados en estas otras dimensiones”.

Algo que sí parece ser cierto después de todo esto es que los físicos han probado sin lugar a dudas la existencia de una maravillosa dimensión: la de la imaginación, el punto de partida de tantos grandes descubrimientos .

Use Facebook to Comment on this Post

Advertisement

CIENCIAS

El Sol, una constante fuente de energía

El Sol es una de las miles de millones de estrellas que existen en el Universo, pero dentro del Sistema Solar es el astro principal. Su luz y calor hacen posible la existencia de vida en nuestro planeta y su constante energía es aprovechable como fuente calórica y para generar electricidad.

El astro Sol

Aunque no es una estrella de gran tamaño, el Sol resulta gigantesco al lado de los planetas; tiene un radio 109 veces mayor que el terrestre. Igualmente, su masa es enorme, equivalente a 330.000 veces la de la Tierra.

Las estrellas como el Sol tienen una composición química similar; gran parte de su masa corresponde a hidrógeno (74%) y helio (24%). Debido a sus temperaturas altísimas, los componentes están en estado gaseoso.

Las características físicas del Sol (masa, densidad, temperatura) hacen que los átomos de hidrógeno estén en una constante actividad nuclear, transformándose en helio y emitiendo gran cantidad de energía. Se calcula que la radiación solar que incide sobre la Tierra en una hora, equivale a la energía que demanda el mundo en un año. La energía emitida por el Sol se puede utilizar para generar calor y electricidad.

Según estudios modernos, se sabe que el Sol ha tenido una vida cercana a 5 mil millones de años y se le calculan otros 5 mil millones a futuro. De ahí que la energía solar se considere prácticamente eterna.

Factores astronómicos que inciden en la recepción de energía solar en la Tierra

El movimiento de rotación o giro de la Tierra sobre su eje en 24 horas, incide en que el planeta reciba la radiación solar en forma diferenciada. Se genera el día y la noche, lo cual alterna períodos de luz y oscuridad.

La energía solar que se recibe a lo largo del año también experimenta variaciones, debido a que el planeta en su movimiento de traslación, describe una órbita alrededor del Sol que no es un círculo, sino una elipse. Por ello, hay una época del año en que la Tierra está más cerca del Sol (perihelio), con una distancia de 148.000 km, y otra en que se aleja (afelio), alcanzando el máximo de 152.000 km. Esta diferencia de distancia entre el Sol y la Tierra produce una pequeña variación del orden de 3,5% en la energía que llega al planeta. El perihelio se produce en el mes de enero y el afelio en julio.

sol-perihelio-y-afelio

El movimiento de la Tierra alrededor del Sol, sumado al hecho de que el eje terrestre está inclinado en relación al plano orbital, es la causa de los solsticios y los equinoccios, según los cuales los hemisferios norte y sur reciben alternadamente durante el año distinta cantidad de energía.

Esta inclinación del eje de la Tierra en relación a su órbita, hace que aparentemente el Sol se desplace a lo largo del año entre un Trópico y el otro. De este modo, en un momento del año, los rayos solares son recibidos directamente en el Trópico de Capricornio (solsticio del 21 de diciembre) y el Hemisferio Sur estará en verano, recibiendo el máximo de radiación solar. Lentamente, al desplazarse el Sol hasta el Trópico de Cáncer (solsticio del 21 de junio), el Hemisferio Norte recibirá el máximo de radiación solar, y el hemisferio opuesto estará en invierno. En los equinoccios, los rayos solares caen directamente en el ecuador (21 de marzo y 22 o 23 de septiembre) y ambos hemisferios reciben la misma cantidad de energía.

sol-solsticio-de-verano

sol-solsticio-de-invierno

sol-equinocciosLos equinoccios se producen el 21 de marzo y el 22 de septiembre. Dan inicio a las estaciones de primavera y otoño.

Factores geográficos que inciden en la recepción de energía solar en la Tierra

La latitud, la atmósfera y el relieve son tres factores que inciden en la cantidad de radiación solar que recibe el planeta.

La Tierra es esférica, por lo que recibe directamente los rayos solares en las zonas cercanas al ecuador y cada vez en forma más oblicua hacia las polares. De este modo, la latitud es un factor determinante en este aspecto y permite distinguir cinco zonas geográficas:

Zona intertropical: entre ambos trópicos, los que se localizan a 23° 27´ de latitud N y S; es el área que recibe mayor cantidad de energía y presenta los climas más calurosos.

Zonas templadas: entre los trópicos y los círculos polares, estos últimos localizados a 66° 33´ N y S.

Zonas polares: entre los círculos polares y los polos (90° N y S), siendo las tierras más frías del planeta y las menos aptas para la vida humana. Los rayos solares caen en estas zonas en ángulos muy oblicuos, de modo que la energía interceptada por la superficie es mucho menor que en la zona intertropical.

sol-energia-solar-segun-latitud

Incidencia de rayos solares en distintos ángulos

sol-radiacionLos rayos solares verticales (A) concentran la insolación en el espacio más reducido (a); los rayos solares oblicuos (B) reparten su insolación en un espacio más extenso (b). Fuente: Strahler, Arthur, 1988

Al girar la Tierra sobre sí misma se produce un abultamiento en el ecuador, en tanto las zonas polares son achatadas. Esta misma situación se produce en la atmósfera, la que alcanza un espesor de 14 kilómetros en el ecuador y de ocho kilómetros en las zonas polares. Ella actúa como un filtro de los rayos del Sol, los que en parte son reflejados y absorbidos a su paso. De este modo la cantidad de energía que llega a la superficie terrestre está en relación al espesor de las capas atmosféricas.

Por el mismo hecho de que la atmósfera es un filtro de los rayos solares, el relieve tiene incidencia en la cantidad de energía recibida, ya que a mayor altitud, su grosor será más reducido. Por este motivo la energía recibida en las altas cordilleras es mayor que en las zonas bajas del relieve.

En relación a la atmósfera, hay que considerar además, que la energía que llega a la superficie de la Tierra depende de las condiciones del cielo, según esté despejado o cubierto.

  • La radiación en la Tierra con cielo despejado o cubierto

    En un día con cielo sin nubes, llega al suelo el 80% de la energía. Del 20% restante, una parte es absorbida en la atmósfera y otra devuelta al espacio. Con cielo cubierto, entre el 30 y 60% de la energía es reflejada hacia el espacio por las nubes y estas absorben entre el 5 y 20%.

    La atmósfera se calienta principalmente por irradiación de la energía recibida y emitida por el suelo, y solo una pequeña porción es calentada por absorción.

  • En la superficie del Sol se observan manchas oscuras (manchas solares) que varían constantemente. Estas son zonas más frías del Sol y están relacionadas con campos magnéticos, los que pueden interferir en las comunicaciones radiales en la Tierra. Las manchas solares tienen ciclos de 11 años entre sus máximos y sus mínimos.

    › Por la distancia en que se encuentra la Tierra del Sol, la luz que este emite demora 8 minutos en llegar a nuestro planeta.

    › El Sol, al igual que los planetas, tiene movimiento de rotación. Como no es un cuerpo sólido, su movimiento es diferenciado; la zona ecuatorial rota en aproximadamente 26 días, en tanto que en la zonas polares este movimiento dura del orden de 30 días.

Use Facebook to Comment on this Post

Continue Reading

CIENCIAS

Alerta astronómica: Prepárense para ver un cometa y bolas de fuego verdes en el cielo esta semana

La NASA ha anunciado que esta semana el cometa 46P / Wirtanen se acercará a la Tierra a una distancia de siete millones de millas y podrá ser apreciado a simple vista como unaluz verde “fantasmal” en la constelación de Tauro.

ALMA Observatory@almaobs

Astronómic alert.

📡
On December 16, the can be seen in plain sight.
☄
And throughout the month, it can be observed with binoculars and small telescopes.

Los astrónomos han catalogado este fenómeno astral como un ‘bono’ adicional frente a la lluvia de estrellas Gemínidas, que iluminan el cielo a fines de cada año. Los expertos han precisado que su punto más visible ocurrirá la noche del 16 de diciembre. Además, serán visibles meteoros verdes que lucirán como bolas de fuego verde en los cielos.

Sin embargo, quienes no logren apreciarlo en esta fecha por diferentes factores, pueden observarlo durante todo el mes con la ayuda de binoculares o pequeños telescopios.

A pesar de que el cometa 46P/ Wirtanen es pequeño, su proximidad histórica podría alcanzar un resplandor de dimensiones similares a la luna llena. Además se ubica entre los 10 cometas más cercanos de la era espacial.

Use Facebook to Comment on this Post

Continue Reading

Facebook

Twitter #Dominicanos

Advertisement

Trending